

2003 GIS

tabular contents that include pre-classification (change detection)

the changes are not visible to the naked eye, nor, at least, not in the

the changes are not visible to the naked eye, nor, at least, not in the

the changes are not visible to the naked eye, nor, at least, not in the

the changes are not visible to the naked eye, nor, at least, not in the

the changes are not visible to the naked eye, nor, at least, not in the

the changes are not visible to the naked eye, nor, at least, not in the

the changes are not visible to the naked eye, nor, at least, not in the

the changes are not visible to the naked eye, nor, at least, not in the

the changes are not visible to the naked eye, nor, at least, not in the

the changes are not visible to the naked eye, nor, at least, not in the

the changes are not visible to the naked eye, nor, at least, not in the

the changes are not visible to the naked eye, nor, at least, not in the

the changes are not visible to the naked eye, nor, at least, not in the

the changes are not visible to the naked eye, nor, at least, not in the

the changes are not visible to the naked eye, nor, at least, not in the

the changes are not visible to the naked eye, nor, at least, not in the

the changes are not visible to the naked eye, nor, at least, not in the

the changes are not visible to the naked eye, nor, at least, not in the

the changes are not visible to the naked eye, nor, at least, not in the

the changes are not visible to the naked eye, nor, at least, not in the

the changes are not visible to the naked eye, nor, at least, not in the

the changes are not visible to the naked eye, nor, at least, not in the

the changes are not visible to the naked eye, nor, at least, not in the

the changes are not visible to the naked eye, nor, at least, not in the

the changes are not visible to the naked eye, nor, at least, not in the

the changes are not visible to the naked eye, nor, at least, not in the

the changes are not visible to the naked eye, nor, at least, not in the

the changes are not visible to the naked eye, nor, at least, not in the

the changes are not visible to the naked eye, nor, at least, not in the

the changes are not visible to the naked eye, nor, at least, not in the

the changes are not visible to the naked eye, nor, at least, not in the

the changes are not visible to the naked eye, nor, at least, not in the

the changes are not visible to the naked eye, nor, at least, not in the

the changes are not visible to the naked eye, nor, at least, not in the

the changes are not visible to the naked eye, nor, at least, not in the

the changes are not visible to the naked eye, nor, at least, not in the

the changes are not visible to the naked eye, nor, at least, not in the

the changes are not visible to the naked eye, nor, at least, not in the

the changes are not visible to the naked eye, nor, at least, not in the

the changes are not visible to the naked eye, nor, at least, not in the

the changes are not visible to the naked eye, nor, at least, not in the

the changes are not visible to the naked eye, nor, at least, not in the

the changes are not visible to the naked eye, nor, at least, not in the

the changes are not visible to the naked eye, nor, at least, not in the

the changes are not visible to the naked eye, nor, at least, not in the

the changes are not visible to the naked eye, nor, at least, not in the

the changes are not visible to the naked eye, nor, at least, not in the

the changes are not visible to the naked eye, nor, at least, not in the

the changes are not visible to the naked eye, nor, at least, not in the

the changes are not visible to the naked eye, nor, at least, not in the

the changes are not visible to the naked eye, nor, at least, not in the

the changes are not visible to the naked eye, nor, at least, not in the

the changes are not visible to the naked eye, nor, at least, not in the

the changes are not visible to the naked eye, nor, at least, not in the

the changes are not visible to the naked eye, nor, at least, not in the

the changes are not visible to the naked eye, nor, at least, not in the

the changes are not visible to the naked eye, nor, at least, not in the

the changes are not visible to the naked eye, nor, at least, not in the

the changes are not visible to the naked eye, nor, at least, not in the

the changes are not visible to the naked eye, nor, at least, not in the

the changes are not visible to the naked eye, nor, at least, not in the

the changes are not visible to the naked eye, nor, at least, not in the

the changes are not visible to the naked eye, nor, at least, not in the

the changes are not visible to the naked eye, nor, at least, not in the

the changes are not visible to the naked eye, nor, at least, not in the

the changes are not visible to the naked eye, nor, at least, not in the

the changes are not visible to the naked eye, nor, at least, not in the

the changes are not visible to the naked eye, nor, at least, not in the

the changes are not visible to the naked eye, nor, at least, not in the

the changes are not visible to the naked eye, nor, at least, not in the

the changes are not visible to the naked eye, nor, at least, not in the

the changes are not visible to the naked eye, nor, at least, not in the

the changes are not visible to the naked eye, nor, at least, not in the

the changes are not visible to the naked eye, nor, at least, not in the

the changes are not visible to the naked eye, nor, at least, not in the

the changes are not visible to the naked eye, nor, at least, not in the

the changes are not visible to the naked eye, nor, at least, not in the

the changes are not visible to the naked eye, nor, at least, not in the

the changes are not visible to the naked eye, nor, at least, not in the
GIS 2003

[Toote et al., 2002; Jensen, 1996]

- Sobrak et al. (2003)
- Akiyama et al. (1998)
- Yuan and Elvidge (1996)

2003 Map of Taiwan

яхיש מ ogóן קר-

Translation:

Understanding Geomatics and Remote Sensing Technologies Towards You

This paper discusses the integration of geomatics and remote sensing technologies, which are crucial components in understanding and using geographic information. Geomatics, which includes GIS, surveying, photogrammetry, and remote sensing, is a multidisciplinary field that combines various technologies to provide comprehensive spatial data and information.

GIS, remote sensing, and related technologies are essential tools in modern urban planning, environmental monitoring, and disaster management. This paper highlights the importance of these technologies in addressing complex issues such as climate change, urbanization, and natural disasters.

Remote sensing involves the acquisition of information about the Earth's surface and atmosphere through the use of various sensors and platforms. Geomatics, on the other hand, encompasses the processes of data collection, management, and analysis to create and maintain geographic information systems (GIS).

Both technologies are indispensable in contemporary geographic research and practice, offering powerful tools for environmental monitoring, urban planning, and disaster management. Through integration and synergy, these technologies can provide valuable insights into the complex dynamics of our environment.

Acknowledgments

This work was supported by the National Science Council of the Republic of China under Grant NSC 103-2221-E-002-028-MY3.
GIS 2003

For the best form of a document, please use the following:

- "incidence (izione) b - Cosine correction"
- "Spatial context"
- "incidence distribution functions (BRDF) bidirectional reflectance distribution functions"
- "DEM cos - Cosine correction"
\[\hat{Q} = \sum_{i,j} (\text{image}_{i,j} - \rho_{(i,j)} \cdot \text{COS}(\theta_{(i,j)}))^2 + \lambda \sum_{(i,j) \text{image}} \sum_{(k,l) \neq (i,j)} |\rho_{(i,j)} - \rho_{(k,l)}| \rightarrow \text{minimun} \]
(b) buildings GIS Layer

(a) DTM from Gaussian density 10 meters 8 bit

Figure 1: DTM (n): A representation of the DTM (n) values using GIS software.

The DTM values are represented using a color scale, where different colors correspond to different values of DTM (n).

Figure 2: Terrain simulation and visualization

The terrain simulation and visualization are used to represent the DTM values in a 3D model.

Instruments

The instruments used to measure the DTM values are described in detail in the text. The instruments include a laser scanner, a GPS receiver, and a drone.

The laser scanner is used to measure the heights of the terrain, the GPS receiver is used to determine the location of the scanner, and the drone is used to capture images of the terrain from different angles.

The data collected from these instruments is then processed using GIS software to create a 3D model of the terrain.

The resulting 3D model can be used to analyze the terrain and make decisions about land use, construction, and other activities.
\textbf{Change Pixel}

\begin{align*}
\text{if} \ |DN - \text{MEAN}| & \geq \text{MEAN} + K \cdot \sigma \\
\text{otherwise} & \text{No Change Pixel}
\end{align*}

- \text{MEAN} - \text{probability factor} = K

The table lists the commission errors for each threshold and omission errors for each threshold.

Images with Gaussian noise: \(m = 0 \) var = 10

Hsun = 40 Az = 40 (א)

Hsun = 48 Az = 350 (ב)

The threshold for matching features is set using the Hausdorff distance between the two images.

DTM [108] shows that the Hausdorff distance is small for DTMs with a high degree of fidelity. The Hausdorff distance is calculated for each pixel and compared to a threshold.

The threshold for matching features is set using the Hausdorff distance between the two images. The Hausdorff distance is calculated for each pixel and compared to a threshold.

The Hausdorff distance is calculated for each pixel and compared to a threshold.
The text discusses the concept of incidence.

In evidence [1] and [2], the incidence is defined as the amount of light reaching a surface at a given angle. The diagrams illustrate the concept of incidence, with one showing the effect of different angles on the intensity of light.

The text also mentions the use of K-means clustering to segment the data based on spatial context. The diagrams illustrate the application of this technique to the data, showing how different clusters are formed based on the incidence and spatial context.

Overall, the document provides a comprehensive overview of the concept of incidence and its applications in spatial analysis.
תרשים 6: קלאסיפיקציה של לשדים וארבע טווחי בדצמול באמצעות Kmeans ל- L1

ה RTL וетодLow לשכינות והשוואת בגוון Shower רמת ההידר ist של Kmeans בדצמול L1 בשכינות ו trúיתות ביווית משותף בכל מיקומי ל- L1 מענקות תרשים 8 במטרה بو獴 והידרית או תרשים של Kmeans הדצמול ומושגבוד זהויות משותף והיווית מצודב מעשלא ארצנט 한ידוס החדרים (עבוי מכודס והידריה) את הדדיים הכבear ביווית.

 tabel 1: סטישון תقرأ והמרמה בחוור מוכרים וטסיטוס תقرأ בדצמול הקטגוריות.

<table>
<thead>
<tr>
<th>תвременно</th>
<th>ממד L1</th>
<th>שטח ייחודי</th>
<th>ממד קלאסיפיקציה</th>
<th>ל- msE</th>
<th>ל- msE</th>
<th>ל- msE</th>
</tr>
</thead>
<tbody>
<tr>
<td>תרם קלאסיפיקציה</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STD ALL</td>
<td>MSE</td>
<td>STD ALL</td>
<td>MSE</td>
<td>STD ALL</td>
<td>MSE</td>
<td>STD ALL</td>
</tr>
<tr>
<td>27</td>
<td>0.012</td>
<td>97</td>
<td>0.019</td>
<td>84</td>
<td>0.024</td>
<td>106</td>
</tr>
<tr>
<td>29</td>
<td>0.004</td>
<td>74</td>
<td>0.019</td>
<td>74</td>
<td>0.019</td>
<td>106</td>
</tr>
</tbody>
</table>

תרשים 7: מענקות ל-ROC לשכיות ובו הידריה הנכורה.

מד שיווי או ממד נורמה סטישון תقرأ לשכיות למד דיקוס ה-STD לכל קטע נמוך ל- STD.

